Justification Using Properties of Equality and Congruence

PROPERTIES OF EQUALITY FOR REAL NUMBERS		
Reflexive Property	For any number a , $a = a$.	
Symmetric Property	For any numbers a and b , if $a = b$ then $b = a$.	
Transitive Property	For any numbers a , b and c , if $a = b$ and $b = c$, then $a = c$.	
Addition and Subtraction Properties	For any numbers a , b and c , if $a = b$, then $a + c = b + c$ and $a - c = b - c$.	
Multiplication and Division Properties	For any numbers a , b and c , if $a = b$, then a $c = b$ c and if c 0, then a $c = b$ c .	
Substitution Property	For any numbers a and b , if $a = b$, then a may be replaced with b in any equation.	

PROPERTIES OF CONGRUENCE		
Reflexive Property of Congruence	$\overline{AB} \cong \overline{AB}$	
Symmetric Property of Congruence	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$	
Transitive Property of Congruence	If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$	

Lesson Plan: Different Methods of Proof

Justification Using Properties of Equality and Congruence (Continued)

State the property of equality or property of congruence that justifies each conclusion.

- 1. Given: $m \angle 1 = m \angle 2$
 - $m \angle 2 = 75$
 - Conclusion: $m \angle 1 = 75$
- 2. Given: $\overline{EG} \cong \overline{FG}$
 - $\overline{FG} \cong \overline{GH}$
 - Conclusion: $\overline{EG} \cong \overline{GH}$
- 3. Given: x + 9 = 13
 - Conclusion: x = 4
- 4. Given: JK = KL
 - MN = KL
 - Conclusion: JK = MN
- 5. Given: 7x = 63
 - Conclusion: x = 9
- 6. Given: $m \angle 3 = 65$
 - $m \angle 4 = 65$
 - Conclusion: $m \angle 3 + m \angle 4 = 130$
- 7. Given: $\angle 1 \cong \angle 2$
 - $\angle 2 \cong \angle 3$
 - Conclusion: $\angle 1 \cong \angle 3$
- 8. Given: \overline{XY} is a segment
 - Conclusion: $\overline{XY} \cong \overline{XY}$
- 9. Given: 2x + y = 70
 - y = 3x
 - Conclusion: 2x + 3x = 70
- 10. Given: $\angle A \cong \angle B$
 - Conclusion: $\angle B \cong \angle A$

Justification Using Properties of Equality and Congruence (Continued)

Supply the missing reasons for each of the following:

11.

Given:
$$15y + 7 = 12 - 20y$$

Conclusion: $y = \frac{1}{7}$

Statement	Reason
1. $15y + 7 = 12 - 20y$	1.
2. $35y + 7 = 12$	2.
3. $35y = 5$	3.
4. $y = \frac{1}{7}$	4.

12.

Given:
$$m\angle 1 + m\angle 2 = 100$$

$$m\angle 1 = 80$$

Conclusion: $m\angle 2 = 20$

Statement	Reason
1. $m \angle 1 + m \angle 2 = 100$	1.
2. m∠1 = 80	2.
3. $80 + m\angle 2 = 100$	3.
4. m∠2 = 20	4.

Lesson Plan: Different Methods of Proof

Justification Using Properties of Equality and Congruence (Continued)

13.

Given:
$$m \angle 1 = 40$$

 $m \angle 2 = 40$
 $m \angle 1 + m \angle 3 = 80$
 $m \angle 4 + m \angle 2 = 80$

Conclusion: $m \angle 3 = m \angle 4$

Statement	Reason
1. $m \angle 1 + m \angle 3 = 80$	1.
2. m∠1 = 40	2.
3. $m \angle 3 = 40$	3.
4. $m \angle 4 + m \angle 2 = 80$	4.
5. $m \angle 2 = 40$	5.
6. m∠4 = 40	6.
7. m∠3 = m∠4	7.

14.

Given:
$$m \angle 1 + m \angle 2 = 180$$

 $m \angle 2 + m \angle 3 = 180$

Conclusion: $m \angle 1 = m \angle 3$

Statement	Reason
1. $m \angle 1 + m \angle 2 = 180$	1.
2. $m \angle 2 + m \angle 3 = 180$	2.
3. $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	3.
$4. m \angle 2 = m \angle 2$	4.
5. m∠1 = m∠3	5.

Lesson Plan: Different Methods of Proof

Answers:

- 1. Transitive Property
- 2. Transitive Property of Congruence
- 3. Subtraction Property
- 4. Transitive Property
- 5. Division Property
- 6. Addition Property
- 7. Transitive Property of Congruence
- 8. Reflexive Property of Congruence
- 9. Substitution Property
- 10. Symmetric Property of Congruence
- 11. 1. Given
 - 2. Additive Property
 - 3. Subtractive Property
 - 4. Division Property
- 12. 1. Given
 - 2. Given
 - 3. Substitution Property
 - 4. Subtraction Property
- 13. 1. Given
 - 2. Given
 - 3. Subtraction Property
 - 4. Given
 - 5. Given
 - 6. Subtraction Property
 - 7. Transitive Property
- 14. 1. Given
 - 2. Given
 - 3. Transitive Property
 - 4. Reflexive Property
 - 5. Subtraction Property

Lesson Plan: Different Methods of Proof